
Navigation Design and Information

Architecture

Assignment 2

UX Design Studio – IV



Course Code: UXD 205

Student Name:



Pujan Aggarwal

Student ID:



A021142924039

Submission Date:



22 December 2025



Abstract

This assignment focuses on building a complete navigation architecture for an Event Ticket

Booking Application, derived from the functional decomposition created in Assignment 1. The

work translates system functionality into structured navigation paths, covering primary,

secondary, and tertiary screens along with system-driven and conditional routes. The

architecture accounts for user goals, task sequences, and system constraints to ensure clarity

and scalability. Special attention is given to error states, authentication flows, and automated

system routes to reflect real-world usage conditions.

Problem Definition

Designing a navigation architecture for an Event Ticket Booking Application presents a unique

challenge due to the system’s functional density and high number of conditional pathways. Unlike

simple content-driven applications, this product must support discovery, selection, transaction,

and post-booking management while simultaneously handling system-driven states such as seat

availability, payment validation, authentication, and error recovery.

The primary problem lies in translating a complex functional structure into a navigation system

that remains understandable and usable for end users. Many critical processes such as seat

locking, payment retries, refunds, and session expiration are essential to system reliability but are

not directly initiated by users. If these system-driven routes are not carefully integrated into the

navigation architecture, they can lead to broken flows, confusion, or loss of user trust.

Additionally, users interact with the system in non-linear ways. They may enter the product

through different entry points, abandon flows mid-way, encounter unavailable data, or return after

long periods of inactivity. The navigation architecture must therefore account for alternate paths,

redirection states, and conditional screens without increasing cognitive load.

The core problem addressed in this assignment is to design a navigation structure that balances

clarity with completeness. The architecture must expose necessary functionality at the right

level, hide system complexity where appropriate, and still provide predictable navigation across

normal, exceptional, and failure scenarios.

Summary of Feature Inventory



The feature inventory for this navigation architecture is derived directly from the five-layer

functional decomposition developed in Assignment 1. The purpose of this step is to identify all

functional elements that require user-facing screens and to distinguish them from system-level

logic and background processes. This ensures that the navigation structure is grounded in actual

functionality rather than assumed interface elements.

Based on the decomposition, features were classified into three categories: interface-level

features, system-level features, and background processes.

Interface-level features are functions that require one or more screens for user interaction.

These include event discovery, search and filtering, event detail views, seat selection, cart and

checkout, payment selection, ticket access, booking history, cancellations, and profile

management. Several of these features require multiple screens, such as the booking flow (event

selection → seat selection → order summary → payment → confirmation) and post-booking

management (ticket view, cancellation, refund status).

System-level features are logic-driven components that influence navigation but do not always

have a dedicated screen. Examples include seat locking, inventory synchronization, dynamic

pricing, fraud detection, payment verification, session handling, and refund eligibility checks.

While these features operate in the background, they often generate conditional screens such as

loading states, validation screens, error messages, or confirmation views that must be

represented in the navigation architecture.

Background processes include fully automated operations such as cache invalidation, database

synchronization, audit logging, notification scheduling, retry mechanisms, and analytics

generation. These processes do not require direct user interaction but trigger system-driven

routes like success messages, retry prompts, timeout screens, or forced redirections.

From this inventory, all features requiring a user interface, multiple screens, or dynamic content

generation were extracted. These features form the foundation for grouping, navigation

clustering, and flow mapping in the subsequent sections. By explicitly separating interface-level

functionality from system and background logic, the navigation architecture can remain user-

centric while still accounting for real-world system behavior.

Navigation Grouping Logic

Navigation grouping for the Event Ticket Booking Application was derived from the feature

inventory identified in the previous section. Features were organized into hierarchical navigation

clusters to reduce cognitive load, support task continuity, and align with user goals and system



constraints. The grouping follows a three-level structure: primary categories (Level 1), sub-

categories (Level 2), and micro-functions (Level 3).

Level 1: Primary Navigation Categories

The primary navigation consists of high-frequency, goal-oriented sections that represent the

core user intents within the system. These include Event Discovery, Bookings, Tickets, Profile,

and Support. Each category exists to support a distinct mental model rather than a technical

grouping.

Event Discovery groups all features related to browsing, searching, filtering, and comparing

events. This category is placed first due to its high entry frequency and its role as the starting

point for most user journeys.

Bookings represents active and historical booking-related tasks such as order summaries,

cancellations, refunds, and booking status. This category is separated from Tickets to avoid

mixing transactional history with access credentials.

Tickets focuses on ticket access, QR codes, transfers, and entry-related actions. This separation

ensures that time-sensitive actions are immediately accessible without navigating through

booking management screens.

Profile contains user-specific settings including personal details, preferences, saved payment

methods, and accessibility options. These features are lower in frequency and are therefore

placed away from the primary task flows.

Support includes help resources, FAQs, dispute resolution, and system-generated assistance.

This category is intentionally isolated to prevent support actions from interrupting primary flows.

Level 2: Sub-Category Grouping

Within each Level 1 category, features are grouped based on task sequence and functional

similarity. For example, Event Discovery contains sub-categories such as Search, Filters, Event

Details, and Venue Information. These elements are grouped to support progressive disclosure,

allowing users to move from exploration to selection naturally.

In the Bookings category, sub-categories include Active Bookings, Past Bookings, Cancellations,

and Refund Status. These groupings reflect different temporal states of a booking rather than

feature type.

Tickets include sub-categories such as Ticket Wallet, QR Code View, Ticket Transfer, and Entry

Instructions. These are grouped to support fast access during time-critical scenarios such as



venue entry.

Profile sub-categories include Account Details, Preferences, Security, and Payment Methods.

Support sub-categories include FAQs, Contact Support, and Issue Tracking.

Level 3: Micro-Function Placement

Micro-functions represent detailed actions that occur within specific screens, such as applying

filters, selecting seats, validating OTPs, or confirming payments. These functions are embedded

contextually within their parent screens rather than exposed as standalone navigation items. This

approach minimizes navigation depth and prevents users from being overwhelmed by excessive

options.

Grouping Criteria

All navigation clusters were formed using the following criteria:

Functional similarity to ensure related tasks are grouped together

Frequency of access to prioritize commonly used features

Cognitive load to avoid unnecessary mental switching

Task sequence to support natural user progression

User goals rather than system architecture

System constraints such as validation and state dependency

This grouping logic ensures that the navigation architecture is symmetrical, predictable, and

complete, while still flexible enough to accommodate system-driven and conditional flows

addressed in later sections.



Global Navigation Strategy

The navigation architecture for the Event Ticket Booking Application adopts a hybrid navigation

strategy, combining tab-based primary navigation with contextual and system-driven navigation

patterns. This approach was selected to balance high-frequency user tasks with complex,

conditional flows that occur during booking and post-booking scenarios.

The primary navigation uses a tab-based structure to expose the most frequently accessed user

goals: Event Discovery, Bookings, Tickets, Profile, and Support. Tab-based navigation is

appropriate for this product because users regularly switch between these sections, and the tabs

provide persistent visibility and quick access without increasing cognitive load.

Contextual navigation is used extensively within task flows such as booking, seat selection,

checkout, and payment. These flows require sequential progression and temporary focus, making

them unsuitable for permanent global navigation placement. Contextual screens such as seat

maps, order summaries, payment validation, and confirmation pages are therefore accessed

through in-flow transitions rather than direct navigation links.

System-driven navigation is used for non-user-initiated transitions, including error states, loading

screens, retry prompts, authentication redirects, and session expiration handling. These routes

are not exposed in the global navigation but are embedded into the architecture to ensure

predictable recovery paths and continuity of user journeys.

Alternative navigation patterns such as drawer-based or fully hierarchical navigation were

evaluated and rejected. Drawer-based navigation increases discoverability cost and slows access

to time-critical actions such as ticket retrieval. Fully hierarchical navigation introduces

unnecessary depth and makes it difficult to handle cross-functional flows such as booking-to-

ticket transitions.

The hybrid approach ensures that core user goals remain immediately accessible while complex

system behavior is handled contextually, resulting in a navigation structure that is both flexible

and scalable.



Complete Navigation Maps

This section presents the complete navigation architecture derived from the feature inventory

and grouping logic defined earlier. The diagrams illustrate how primary, secondary, and tertiary

screens are connected across the product, including contextual transitions between major task

flows. Each map expands a Level 1 navigation category to show its internal structure and

relationships.



Conditional and System-Driven Flows

This section documents navigation paths that are triggered by system conditions rather than

direct user intent. These include authentication checks, data unavailability, validation failures,

and system enforcement routes such as retries, redirects, and forced actions. The following

diagrams illustrate how the navigation architecture responds predictably under different

conditional states.



Rationale

The navigation architecture presented in this assignment is grounded in the functional

decomposition developed in Assignment 1 and refined through feature inventory and grouping

analysis. Each Level 1 navigation category exists to represent a distinct user goal rather than a

technical system boundary. Event Discovery was prioritized as the primary entry point due to its

high frequency of use and its role as the starting point for most user journeys.

Bookings and Tickets were intentionally separated to distinguish between transactional

management and time-sensitive access. This separation reduces cognitive load by preventing

users from navigating through historical or administrative screens when they need immediate

ticket access. Profile and Support were placed as secondary navigation destinations because

they are accessed less frequently and typically outside core booking flows.

Screen groupings within each category were designed based on task sequence and state

progression. Features that require focused, linear interaction, such as seat selection and

payment, were embedded within contextual flows rather than exposed as persistent navigation

items. Certain screens were merged or hidden to avoid redundancy, particularly where system-

driven logic already enforces progression or validation.

Conditional and system-driven routes were explicitly integrated into the architecture to ensure

predictable recovery paths. Error states, retries, authentication redirects, and session handling

were treated as first-class navigation elements rather than exceptions. This approach ensures

that the navigation structure remains resilient under real-world conditions such as failures, data

unavailability, or partial user actions.

Overall, structural decisions were made to balance clarity, scalability, and flexibility while

maintaining alignment with user goals and system constraints.

Key Insights and Learnings

This assignment demonstrated that effective navigation architecture cannot be designed

independently of system logic. Many critical navigation paths are driven by conditions such as

authentication state, availability, validation, and system enforcement rather than direct user

intent.



The exercise highlighted the importance of separating interface-level screens from system-

driven routes. While users interact with only a subset of the system, the navigation architecture

must still account for all possible transitions, including errors, retries, and forced redirects.

Ignoring these paths leads to fragile designs that fail under real-world usage.

Another key insight was the value of grounding navigation decisions in functional decomposition

rather than assumptions about screens. By deriving navigation directly from system functionality,

the architecture remains consistent, complete, and defensible.

Finally, designing navigation as a structured system rather than a collection of pages enables

better scalability. As new features or conditions are introduced, they can be integrated into the

existing structure without disrupting core user flows.


